Energy Saving Analysis for the Wavelet
Transform Processing

Héctor Silva-Lopez!, Sergio Suarez Guerra

Center of Computational Research, National Technical Institute, México, A.P. 75-476, C.P.
07738, Zacatenco, DF, México.

hsl@fis.cinvestav.mx!, ssuarez@cic.ipn.mx

Abstract. The applications of the wavelet transform which are executed in mobile
devices usually operate with batteries of limited capacity. The problem to be solved
is how to increase the efficiency of the batteries used so that their time life can be
measured in days instead of hours. On the other hand, the ability to adapt the
changes of the work charge conditions for a real-time system with energy saving is
handled in this article using an algorithm for graphic applications (by means of dis-
crete wavelet transform) which presents a considerable energy saving in its process-
ing. These applications will be executed in a variable voltage processor. The algo-
rithm selects the way of execution of each level of discrete wavelet transform so
that the energy saving is maximized and that the deadline is not lost. The problem is
presented as a problem of dynamic optimization with discrete constraints. The ex-
perimental results were focused on images that showed that the filters Haar, Daub4
and Daub6 had a smaller execution time for the algorithm presented. These filters
had a smaller execution time for smaller images size. The energy saving is greater
for smaller images and smaller for bigger ones. An extra saving is obtained if the al-
gorithm is executed in a shared memory environment.

1 Introduction

Although wavelet have their roots in approximation theory [7] and signal processing
[14], they have recently been applied to many problems in computer graphics. These
graphics applications include image editing [4], image compression [12], and image que-
rying [3]. These applications impose strict quality of service requirements in the form of
timing constraints. Ignoring energy consumption, operating the CPU at its highest speed
operation quickly drains the batteries. Thus there is a tradeoff between reduced energy
consumption and quality of service.

Voltage scaling technology has the potential to exploit such variability in the case of
meeting timing constraints. By adjusting the operating voltage of the processor, the en-
ergy consumption and speed can be controlled [1]. Power regulator and variable voltage

A. Gelbukh, S. Suarez, H. Calvo (Eds.) Received 02/07/07
Advances in Computer Science and Engineering Acepted 19/10/07
Research in Copmuting Science 29, 2007, pp. 285-294 Final Version 20/10/07

286 Heéctor Silva-Lopez, Sergio Sudrez

processors with response times in the microseconds range are available [10]. Fast re-
sponse time makes it practical to dynamically adjust the voltage at run time.

Recently, researches have attempted to apply Dynamic Voltage Scaling (DVS) to video
decoding to reduce power [5, 8, 9, 11]. These studies present approaches that predict the
decoding time of incoming frames or Group of Pictures (GOPs), and reduce or increase
the processor setting based on this prediction. As a result, idle processing time, which
occurs when a specific frame decoding completes earlier than its playout time, is mini-
mized. In [6] an alternative method called Dynamic is proposed as an improvement to
these techniques. The Dynamic approach is designed to perform well even with high
motion videos by dynamically adapting its prediction model based on the decoding ex-
perience of the particular video clip being played. The same authors present another alter-
native method called frame data computation aware (FDCA) in [2]. FDCA dynamically
extracts useful frame characteristics while a frame is being decoded and uses this infor-
mation to estimate the decoding time.

The objective of this work is to develop a new DVS technique for the energy saving.
An algorithm that can be used for any graphic application that uses the wavelet transform
for its implementation is presented. Some energy saving will be obtained for each level of
the transformed one, and the sum of energy savings of all the levels is considered the total
energy saving.

This article is structured as follows: In section 2, a general description of wavelet
transform is given. In section 3, the problem is formulated and the algorithm is described.
Section 4 shows a practical example to demonstrate the function of the algorithm. The
simulation of experiments is described in section 5. And finally, the conclusions are de-
scribed in section 6.

2 Wavelet Transform

Of the many processes available for image compression, two of the most popular trans-
formations are the Discrete Cosine Transform (DCT) used in the common JPEG format,
and the Discrete Wavelet Transform (DWT) used in the newer JPEG 2000 format. The
DWT differs from the traditional DCT in several fundamental ways. The DCT operates
by splitting the image into 8x8 blocks that are transformed independently [13]. Through
this transformation process, the energy compaction property of the DCT ensures that the
energy of the original data is concentrated in only a few of the transformed coefficients,
which are used for further quantization and encoding [15]. It is the discarding of the
lower-energy coefficients that result in image compression and the subsequent loss of
image quality. Unfortunately, the rigid 8x8 block nature of the DCT makes it particularly
susceptible to introducing compression artifacts (extraneous noise) around sharp edges in
an image. This is the “halo effect” seen in over compressed web images. Because the

Energy Saving Analysis for the Wavelet Transform Processing 287

artifacts become more pronounced at higher compression ratios, JPEG’s suitability for
line drawings and cartoon-like images is significantly impaired.

In contrast to the DCT, the DWT operates over the entire image, eliminating artifacts
like those caused by the 8x8 DCT blocking. Like the DCT, the fundamental wavelet
transform is completely reversible, meaning that if the forward and reverse transforms are
applied in sequence, the resulting data will be identical to the original. In addition, the
DWT is based on sub-band coding where the image is analyzed and filtered to produce
image components at different frequency sub-bands [18]. This produces significant en-
ergy compaction that is later exploited in the compression process. The wavelet’s two-
dimensional nature results in the image visually being divided into quarters with each
pass through the wavelet transformation. A key effect of this transformation is that all of
the high pass quadrants in the image contain essentially equivalent data [16]. In the field
of wavelets, the Haar wavelet is traditionally used for rudimentary image compression
because of its algorithmic simplicity and low computational complexity due to an integer
based design [18].

When the wavelet is applied and through its filtering process produced the scaling
function coefficients (low frequency) and wavelet coefficients (high frequency). From the
application of the Haar wavelet, it is evident that the scaling function coefficients is sim-
ply the average of two consecutive pixel values, while the corresponding wavelet coeffi-
cient is the difference between the same two pixel values. The scaling function coeffi-
cients appear to contain all the image data, while the wavelet coefficients appear to be
zero (black).

Figure 1 presents the process of the wavelet transform. It begins with an original im-
age, when the transformed by row occurs, the image is divided in two halves, the first half
corresponds to the scaling function and the second half corresponds to the wavelet trans-
form,; each is called half sub-band.

original image row transformed colunn transformed

scaling function coefficients wavelet coefficients
(low frequency) (high frequency)

Figure 1.First Level Transform.
When the following transformed by column is performed, this image is divided in four

equal parts or sub-bands. The first quadrant or sub-band corresponds to the scaling func-
tion and the other three sub-bands, to the wavelet transform; in this first step, four sub-

288 Heéctor Silva-Lopez, Sergio Sudrez

bands are obtained. This process is repeated for the scaling function for the second level
and so on successively. In the end, the image is seen as it is shown in figure 2.

3 Formulation of the Problem

The problem can be formulated as follows. Each time a new image arrives at or leaves the
system, the problem is to determine the mode (speed) of execution of the sub-bands such
that no sub-band misses its deadline and the energy savings of the system is maximized.
Each image in the system execute in a discrete voltage/frequency processor. Note that a
solution to this problem must be computed each time a new image arrives or leaves the
system, therefore a solution with probably cause deadlines to be missed.

scaling function o &
coefficients ! e R)
Sl 7 ol / N = —t— wavelet coefficients
; : level 1

wavelet coefficients
level 3

wavelet coefficients
level 2

Figura 2. Wavelet Transform for three levels.

The problem is formulated as:

max J = Zzlsk [u(k)]

{u(k)lizo

subjectto x(k+1) = x(k)—u(k)

x(0)=1.0,
with: *(3)=0,
u(k) < x(k),

u(k) €{1.0,0.8,0.6,0.4,0.15} for k =0,1,2
where

Energy Saving Analysis for the Wavelet Transform Processing 289

k =correspondo sub—bands

S, [u(k)]=energysaving
x(k)=variableof state

u(k) =controkariable(speedto selecy.

Bellman’s optimality principle is used by compute the state variable in each stage, as
follows:

Step 1: x(3) is calculated as follow:
Jiix(3)}=0
Step 2: x(2) €{1.0,0.8,0.6,0.4,0.15} is:
Ji{x(2)} = maxiS,[u(2) + J5{x(2)~u(2)}},

where:
X3)=0=x(2)—u(2),u(2) <x(2),u(2) €{0.150.4,0.6,0.8 1.0}
Step 3: x(1) €{1.0,0.8,0.6,0.4,0.15}, the equation that corresponds is:
J} ()} = max (S, [u(h) + /3 {x() ~u(D}

where:
u(l) < x(1), u(l) € {0.15,0.4,0.6,0.8,1.0}
Step 4: x(0)=1.0 is:
Jo{1.0} = max{S,[u(0) + J; {1.0-u(0)}},

where:

1(0) <5, 1(0) €{0.15,0.4,0.6,0.8,1.0}

4 Example of the Algorithm

To illustrate the execution of the proposed algorithm, we consider the image Lena and
we use five discrete speed levels {1.0, 0.8, 0.6, 0.4, 0.15}, in a discrete voltage/frequency
processor. The CPU utilization can be measured while the system is under various states
of loading. Obviously there is no way (yet) to measure CPU utilization directly. CPU
utilization must be derived from measured changes in the period of the background loop.
The average background loop period should be measured under various system loads and
then the CPU utilization can be obtained. The CPU utilization is defined as the time ‘not’
spent executing the idle task (is a task with the absolute lowest priority in a multi-tasking
system). The amount of time spent executing the idle task can be represented as a ratio of
the period of the idle task in an unloaded CPU to the period of the idle task under some
known load.

290 Héctor Silva-Lopez, Sergio Sudrez

% time in the idle task = (average period of the background task with no load) * 100%
/ (average period of the background task with some load) [1]

Based on DVS technique, we adjust processor speed for each sub-band with slack rec-
lamation.

Table 1 shows the time in microseconds for each sub-band of the image. Five levels
are considered. The average execution time of the idle task is 195 microseconds, this time
was calculated in the same was as the one presented in [17] for which an Analyzer of
Logical State was used to measure the data that flow through the data and direction bus
when a task is being executed in background. The time obtained is the average period of
the task in background without load. Immediately, the time of the idle task with load is
obtained, when each sub-band of the second column of table 1 is executed, and finally,
the third column is obtained from equation 1. The fourth column is the result of subtract-
ing the third column from 100 in order to obtain the use of the CPU.

After the executing the first sub-band of the level 1, to the maximum speed, we can ob-
tain the percentage of utilization of this sub-band, the percentage idle is assigned to sub-
bands 2 and 3, the executing speed the these sub-bands depending the result of first sub-
band. Later, for the others levels, calculating the percentage of utilization for the first sub-
band of each level and assigning the percentage idle to the two following sub-bands. In
the table 2 is presented the percentage of energy saving level by level. The total energy
saving of the all image is 44.19 %.

Sub-bands T (microseconds) % Idle % CPU
1 974 20.02 79.97
2 535 36.49 63.55
3 388 50.26 49.74
4 859 22.70 77.30
5 417 46.76 53.24
6 353 55.24 44.76
7 595 32.77 67.23
8 368 52.99 47.01
9 287 67.94 32.06
10 445 43.82 56.18
11 313 62.30 37.70
12 267 73.03 26.96
13 342 57.02 42.98
14 281 69.39 30.61
15 247 78.95 21.05

Table 1. Sub-bands vs. Average background loop Period.

The energy saving per level of the third column of table 2 was the one that was ob-
tained per sub-band. For the fourth column, the percentage of the total energy saving per
level was calculated on the basis of the maximum saving that could be obtained per level
with respect to the obtained from the third column. For example, for the first level, the

Energy Saving Analysis for the Wavelet Transform Processing 291

maximum saving that could be obtained is 20,02 for the first sub-band, 36,49 for second
sub-band and 50,26 for the third sub-band, which gives a maximum total of 106.77. The
total saving obtained per sub-band was of 40,04; then the percentage of saving energy is
obtained from a rule of three which is 37.50% for the first level, and so on for the other
levels.

Level Sub-band % Energy Saving Total

1 1 0

2 20.02

3 20.02 =37.50%
2 4 0

5 22.70

6 22.70 =36.40 %
3 7 0

8 32.77

9 32.77 =42.64 %
4 10 0

11 43.82

12 43.82 =48-91%
5 13 0

14 57.02

15 57.02 =55.53%

Table 2. Energy Saving for level.

5 Simulation Experiments

The algorithm proposed on the basis of our criterion of optimization presented in this
paper is verified in this experiment simulation, using different images and different wave-
let filters. The objective of this experiment simulation is to measure the energy saving for
different image sizes. Each image size will be observed for different wavelet filters. It can
be observed that different execution times are obtained if different wavelet filters are
used. The execution time for each level is physically measured in microseconds, having
used a Laptop Sony, model VGN-T350P, with a processor Intel Centrino at 3,2 GHZ,
with 512MB of RAM and running in the Operating System Fedora Linux version 5.0. The
used function to measure the time is psched_get_time.

Figure 3 presents the execution times obtained when performing the wavelet transform
for each level, using different filters. It can be seen that Villa2 filter obtained the worst
time and that the Haar filter obtained the best one, within the first 3 levels. For the rest of
the levels, all the filters tended to have an equal time, tending to zero, mainly because the
transformed in level 5 was made only for a block of 32x32 pixels. This Figure 3 shows
that the three best filters are the Haar, Daub4 and Daub6, and it is from these filters that
the execution time for each level, using different image sizes as shown in figure 4, will be
obtained.

292 Heéctor Silva-Lopez, Sergio Suarez

Figure 4 shows that the smaller the image, the smaller execution time per level. This
same behavior can be observed for the filters Daub4 (figure 5) and Daub6 (figure 6). The
difference between the execution times for the three types of filters is conserved in these
three figures. It is important to mention that the times (for each filter) were almost equal
when they were proven with other images, which lead to conclude that these times are
constant for any type of image of the same size.

HAAR
A A 1000000
80000 -
[12E2e
_ —— Adelson 00000 - s ss
13 ~ Haar R s12E2
g 5000 Caubd - I 02024
g & o 2tumans
5 ——— Antonini ¥ 10000 o -
E 40000 Brislawn g |
g Daubs §
30000 Daubs 'é 1000 o
[- Qdegard =
2 — villat p i
20000 — £ 1
I% a2 §
10000 - “x" 104
04
1
- " T 1 2 3 4 5
1 2 3 4 5 Bands
Bands
Figure 3. Execution time for different filters Figure 4. Execution time for filter Haar.

The energy saving for these three filters, using different image sizes, is presented in
figure 7. For small image sizes, a greater energy saving is observed and for bigger image
sizes a smaller energy saving is obtained.

DALUBE

Execution Time (micro-sec.)
Execution Time (micro-sec.)

1 2 3 4 s

Bands Bands

Figure 5. Execution time for filter Daub4. Figure 6. Execution time for filter Daub6

The last step consisted of running the algorithm in parallel form in order to observe
how much the energy saving would be reduced in this environment. The algorithm was

Energy Saving Analysis for the Wavelet Transform Processing 293

programmed to be executed by shared memory. The Pthread library, which fulfills with
the standards POSIX, and it allowed working with two threads of execution at the same
time. Figure 8 shows that there was an extra energy saving of the order of 28.77% in
average.

& HAAR

I Monoprocessor
I Two Processors

2 & 3 B 8

Energy Saving

Energy Saving

e 128 2% 512 24 2048

Image size

Figure 7. Energy saving for different size images. Figure 8. Energy saving for two threads.

6 Conclusions

A method of optimization for the discrete wavelet transform applied to images running
in a processor of variable speed is being proposed in this article. The problem is presented
as a linear problem with discrete constraints. The proposed approximate solution is based
on the Bellman equation. An energy saving of the 44.19% is obtained for an image. Com-
paring the execution times among the different filters it is observed that the Villal filter is
the worst and that the Haar filter is the best, but approaching the fifth level, the execution
time tends to zero for all the filters. Taking into account only the three best filters, the
execution time for different image sizes was obtained; thus observing that for small image
sizes, the smaller execution time was obtained. The execution time for other images was
also obtained and the results lead to conclude that these times are equal for any type of
image of the same size. The energy saving for different image sizes was obtained, thus
concluding that a greater saving energy occurs for small image sizes, whereas for a bigger
size, a smaller energy is saved. Finally, when executing the algorithm in a shared memory
environment, an extra saving of the order of 28.77% in average was obtained.

294 Hector Silva-Lopez, Sergio Sudrez

References

[1] A. Chandrakasan, S. Sheng and R. W. Brodersen, “Low-power CMOS digital design”, IEEE
Journal of Solid State Circuirs, 27, pp. 473-484, April 1992.

[2] B. Lee, E. Nurvitadhi, R. Dixit, C. Yu, and M. Kim, “Dynamic Voltage Scaling Techniques for
power efficient video decoding”, Journal of Systems Arquitecture, pp. 633-652, Available online
18 April 2005.

[3] Charles E. Jacobs, Adam Finkelstein, and David h. Salesin, “Fast multiresolution image query-
ing”, In Proceedings of SIGGRAPH 95, pages 277-286, ACM, New York 1995.

[4] Debora Berman, Jason Bartell, and David Salesin, “Multiresolution painting and compositing”,
In Proceedings of SIGGRAPH 94, pages 85-90, ACM, New York, 1994.

[51 D. Son, C. Yu, and H. Kim, “Dynamic Voltage Scaling on MPEG Decoding”, International
Conference of Parallel and Distributed Systems (ICPADS), June 2001.

[6] E. Nurvitadhi, B. Lee, C. Yu, and M. Kim, “A Comparative Study of Dynamic Voltage Scaling
Techniques for Low-Power Video Decoding”, International Conference on Embedded Systems
and Applications (ESA), Jun 23-26, 2003.

[7] Ingrid Daubechies, “Orthonormal bases of compactly supported wavelets”, Communications on
Pure and Applied Mathematics, 41(7): 909-996, October 1988.

[8] J. Pouwelse, K. Langendoen, R. Lagendijk, and H. Sips, “Power-Aware Video Decoding”,
Picture Coding Symposium (PCS’01), Seoul, Korea, April 2001.

[9] J. Pouwelse, K. Langedoen, and H. Sips, “Dynamic Voltage Scaling on a Low-Power Micro-
processor”, 7" ACM Int. Confe, on Mobile Computing and Networking (Mobicom), pp. 251-
259, Rome Italy, July 2001.

[10] M. Fleischmann, “Crusoe power management reduces the operating power with LongRun”, in
Hot Chips 12, Aug. 2000.

[11] M. Mesarina and Y. Turner, “Reduced Energy Decoding of MPEG Stream”, ACM/SPIE Mul-
timedia Computing and Networking 2002 (MMCN’02), San Jose CA, 18-25 January 2002.

[12] R. Devore, B. Jawerth, and B. Lucier, “Image compression Through wavelet transform cod-
ing”, IEEE Transactions on Information Theory, 38(2):719-746, March 1992.

[13] Santa-Cruz, D, T. Ebrahimi, J. Askel6f, M. Larsson and C. A. Christopoulos, “JPEG 2000 Still
Image Coding Versus Other Standards,” Proceedings of SPIE 89 45th Annual Meeting, Applica-
tions of Digital Image Processing XXIII, Vol. 4115, San Diego, CA, July 30-August 4, 2000, pp.
446-454.

[14] Stephane Mallat, “A theory for multiresolution signal decomposition: The wavelet representa-
tion”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7):674-693, July
1989.

[15] Subramanya, S.R., “Image Compression Techniques,” IEEE Potentials, Vol. 20, No. 1, Febru-
ary/March 2001.

[16] Topiwala, P.N., Wavelet Image and Video Compression, Kluwer Academic Publishers, 1998.

[17] Trader Michael, “Embedded Real Time Techniques for Calculating CPU Utilization”, Spring
Embedded Systems Conference, Course ESC-449, San Francisco, USA, March 2004.

[18] Villasenor, J., Belzer, B. and J. Liao, “Wavelet Filter Evaluation for Image Compression”,
IEEE Transactions on Image Processing, Vol. 4, No. 8, pp. 1053-1060, August 1995.

[19] Welstead, S, Fractal and Wavelet Image Compression Techniques, SPIE Optical Engineering
Press, 1999.

